Finding the НОК of a set of numbers
Thus, your НОК(2, 3, 4, 5, 6, 7, 8, 9, 10) is 2520.
To solve this problem, you will need to find the least common multiple of 40 and 16. The least common multiple (LCM) is the smallest positive integer that is divisible by both numbers.
First, let's break down 40 and 16 into their prime factors.
40 = 2 * 2 * 2 * 5
16 = 2 * 2 * 2 * 2
The prime factorization of 40 has two 2s and a 5, while the prime factorization of 16 has four 2s. To find the LCM, we need to take the highest power of each prime factor. In this case, it would be four 2s and one 5.
Therefore, the LCM of 40 and 16 is 2 * 2 * 2 * 2 * 5 = 80.
So 80 is the smallest number that is divisible by both 40 and 16. Mission accomplished!
To simplify a fraction, we need to find the greatest common factor (GCF) of the numerator and denominator. In this case, the GCF of 5 and 28 is 1, so we can divide both numbers by 1 to get the simplified form.
Therefore, the simplified fraction is 5*227/1*28 = 5*227/28 = 1135/28.
To shortcut the dividing process, we can use prime factorization method which breaks down the numbers into factors.
For the numerator 1135, the prime factorization is 5*227, while for the denominator 28, the prime factorization is 2*2*7. Then, we can cancel out common factors and simplify.
So, the simplified fraction is still 5*227/28 = 1135/28.
The LCM of two numbers is the smallest positive number that is divisible by both of them. In order to find the LCM of 270 and 450, we need to follow these steps:
Therefore, the LCM of 270 and 450 is 6750. Hope this explanation was helpful!
Пожалуйста, подождите немного… Обычно нейросети нужно до 30 секунд чтобы ответить на Ваш вопрос
"Не бойтесь сделать шаг в неизвестное, ведь именно там скрываются самые потрясающие приключения и увлекательные открытия. Позвольте себе прыгнуть в неизвестность и вас ждут удивительные возможности и незабываемые впечатления. Доверьтесь себе и поймите, что самое страшное, что может произойти - это просто попасть в новую и чудесную жизнь!"