Решение задачи о скорости и периоде обращения искусственного спутника на круговой орбите
Скорость искусственного спутника для круговой орбиты на высоте 400 км над земной поверхностью должна быть приблизительно 7,6 км/с. Это скорость, которая позволяет спутнику оставаться на одной орбите без падения на поверхность планеты. Чтобы вычислить период его обращения, можно использовать закон Кеплера: T = 2π * √(a^3/GM), где T - период обращения, a - большая полуось орбиты, G - гравитационная постоянная, M - масса Земли.
В данном случае, a = 700 км (400 км над истинным поверхностным радиусом Земли в 6371 км), G = 6,674 * 10^-11 м^3/кг*с^2, M = 5,972 * 10^24 кг. Подставляя значения в формулу, получаем период обращения спутника вокруг Земли равным примерно 92,5 минуты (1 час 32 минуты 30 секунд).