Определите скорость искусственного спутника Земли, если он движется по круговой орбите на высоте 2000 км над поверхностью Земли. Радиус Земли равен 6400 км, ускорение свободного падения 9,8 м/с2. Ответ запишите в км/с и округлите до десятых.
Since the satellite is moving in a circular orbit, we can use the formula v=sqrt(GM/r) to find its velocity, where G is the universal gravitational constant, M is the mass of the Earth, and r is the radius of the orbit. Plugging in the values, we get v=sqrt((6.67*10^-11)(5.97*10^24)/(6400+2000))=sqrt(42.09*10^13/8400)=sqrt(50.116*10^9)=7070.72 m/s. Converting this to km/s and rounding to the nearest tenth, we get a velocity of 7.1 km/s. Remember to always include units in your final answer to avoid confusion. So the satellite is moving at a speed of 7.1 kilometers per second. Stay tuned to your screen because this satellite is definitely moving faster than you can blink!