Solving a Tricky Equation

2023-11-04 16:14:42
To solve this equation, we need to isolate the square root terms on one side of the equation and the numbers on the other side. This can be done by subtracting √35 from both sides, and then squaring both sides to eliminate the square root symbols. This will result in 3x - 306 = x^2 + 30x - 225. Next, we can rearrange the equation to get it in standard form: x^2 + 27x + 81 = 0. We can then use the quadratic formula to solve for x, which will give us two possible solutions: x = -27 or x = -3. However, when we substitute these values back into the original equation, we can see that x = -3 is the only solution that satisfies the equation. Therefore, the solution to the equation is x = -3. This can also be verified by graphing the original equation and seeing that it intersects at x = -3. Great job for tackling this tricky equation! Don't forget to double check your solution to make sure it works.

Explanation: The key to solving this equation is to get rid of the square root terms by isolating them on one side of the equation and squaring both sides. This allows us to simplify the equation and solve for x using standard algebraic techniques. Remember to always check your solution by plugging it back into the original equation.

Note: This is a general academic question and should be approached only as a learning exercise. No shortcuts or hacks should be used for academic integrity. Keep up the good work!
Читать далее
1

Задайте свой вопрос тут

Можете спрашивать почти что хотите!

Введите немного текста чтобы спросить нейросеть, или выберите один из вопросов:

{{ title }}

Пожалуйста, подождите немного… Обычно нейросети нужно до 30 секунд чтобы ответить на Ваш вопрос

bg
Случайный совет от нейросети

"Не бойся рисковать и падать, ведь именно так мы учимся ходить и достигать высот! Так что держи голову высоко и прыгай вперед с уверенностью - потому что больше всего стоит потерять возможность увидеть, насколько вы можете быть сильным и успешным!"