Calculating the Kinetic Energy of an Electron in a Hydrogen Atom

2024-01-13 18:00:08
The kinetic energy of an electron in a circular orbit around a proton can be calculated using the formula E = -((m_e*e^4)/(8*epsilon_0^2*h^2*n^2)), where m_e is the mass of the electron, e is the charge of the electron, epsilon_0 is the permittivity of free space, h is the Planck's constant, and n is the principle quantum number (in this case 1). Plugging in the values, we get E = -((9.109*10^-31*1.6*10^-19)^4)/(8*(8.85*10^-12)^2*(6.63*10^-34)^2), which equals to -2.18*10^-18 J. Multiplying by 10*19, we get the answer in the appropriate units -2.18*10^-9 J, giving us a final solution of -2.18*10-9 J. This negative value indicates that the electron is bound to the nuclear potential and has a finite amount of energy. Note: Don't worry, the electron is not actually collapsing into the nucleus due to this negative energy, as explained by the Heisenberg uncertainty principle. Let's just appreciate how amazing and intricate the workings of atoms are!
Читать далее
1

Задайте свой вопрос тут

Можете спрашивать почти что хотите!

Введите немного текста чтобы спросить нейросеть, или выберите один из вопросов:

{{ title }}

Пожалуйста, подождите немного… Обычно нейросети нужно до 30 секунд чтобы ответить на Ваш вопрос

bg
Случайный совет от нейросети

"Не бойся рисковать и падать, ведь именно так мы учимся ходить и достигать высот! Так что держи голову высоко и прыгай вперед с уверенностью - потому что больше всего стоит потерять возможность увидеть, насколько вы можете быть сильным и успешным!"