Экзамен по математической статистике успешно сдают 75% студентов дневного отделения. Если
на втором курсе факультета обучается 250 студентов, то какова вероятность того, что 203 студента сдадут
экзамен успешно?
НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.
Для ответа на этот вопрос необходимо применить теорию вероятностей. Так как речь идет о непрерывных случайных величинах, то мы будем использовать плотность распределения вероятностей (PDF). Сначала найдем среднее значение и стандартное отклонение для данного экзамена. Для этого умножим 75% на 250 студентов и получим 187.5 успешных сдач. Затем вычислим стандартное отклонение, используя формулу: стандартное отклонение = корень из (N * p * (1 - p)), где N - количество студентов, p - вероятность успешной сдачи. В нашем случае: стандартное отклонение = корень из (250 * 0.75 * (1 - 0.75)) = 8.66. Далее, чтобы найти вероятность успешной сдачи экзамена для 203 студентов, мы будем искать значение PDF для этого числа, используя формулу: PDF = 1 / (σ * √(2π)) * e^(-((х - μ)^2 / 2σ^2)), где σ - стандартное отклонение, μ - среднее значение, е - основание натурального логарифма. В нашем случае: PDF = 1 / (8.66 * √(2π)) * e^(-((203 - 187.5)^2 / 2 * 8.66^2) = 0.0387 * e^((-15.5)^2 / (2 * 8.66^2)) = 0.0387 * e^(-17.86) = 0.0387 * 0.0005 = 0.00001935 = 0.0019%.