дан угол альфа между диагоналями развёртки боковой поверхности цилиндра и дана длина диагонали развёртки боковой поверхности b.Определи площадь полной поверхности цилиндра.
To solve this problem, you can use the formula for finding the surface area of a cylinder: S = 2πrh + 2πr², where S is the surface area, r is the radius of the base, and h is the height of the cylinder. First, we need to find the length of the diagonal of the base of the cylinder, which is equal to the radius. Since the diagonal of the unfolded side surface b is given, we can use the Pythagorean theorem to find the radius: r = √(b²/4 + a²/4), where a is the side length of the cylinder. Once we have the radius, we can find the height of the cylinder, which is equal to the side length: h = a. Now, we can substitute these values into the formula: S = 2π√(b²/4 + a²/4)(a) + 2π(b²/4 + a²/4), which simplifies to S = πa(b + √(5a² + 4b²)). This is the formula for finding the surface area of a cylinder in terms of the given variables.