Прямі CM, CN, CF попарно перпендикулярні, CM=4см, MF=5см, NC=3см. Тоді відрізок NF має довжину:
За теоремой Піфагора в прямокутному трикутнику квадрат довжини гіпотенузи дорівнює сумі квадратів довжин катетів. Тобто, якщо позначити довжину катетів як 'a' та 'b', а гіпотенузи як 'c', то ми отримаємо рівняння c^2 = a^2 + b^2.
У нашому випадку, ми можемо записати таке рівняння: MN^2 = MC^2 + NC^2, де MN - гіпотенуза трикутника MNC, а MC та NC - катети.
Якщо замінити відомі величини, ми отримаємо NF^2 = (4см)^2 + (3см)^2.
Розкривши дужки та скориставшись властивостями степенів, отримаємо NF^2 = 25см^2 + 9см^2 = 34см^2.
Отже, довжина відрізка NF дорівнює квадратному кореню з 34см^2, тобто приблизно 5,83 см.