Дан треугольникABC. На сторонеAC отмечена точка K так что AK=6см,KC=9см. Найдитеплощади треугольников
ABK и CBK если AB=13см, BC=14см
Найдите площадь треугольника ABK, расположенного на стороне AB. Для этого вычислите длину стороны BK, используя теорему Пифагора: BK = √(AB^2 - AK^2). Подставив известные значения, получим BK = √(13^2 - 6^2) = √(169 - 36) = √133. Теперь, зная длину двух сторон треугольника (BK и KC) и угол между ними (A), найдите площадь треугольника ABK по формуле: S_1 = 1/2 * BK * KC * sin(A). Подставляя значения, получим S_1 = 1/2 * √133 * 9 * sin(A). Аналогично, найдите площадь треугольника CBK, расположенного на стороне BC, по формуле: S_2 = 1/2 * BK * KC * sin(B). Объединив полученные значения, получите ответ: площади треугольников ABK и CBK равны S_1 = 1/2 * √133 * 9 * sin(A) и S_2 = 1/2 * √133 * 9 * sin(B) соответственно.