В ядерной модели атома водорода электрон вращается вокруг ядра (протон) по круговой орбите, радиус которой R = 5,3 • 10-11 м. Определите кинетическую энергию, которой обладает электрон на данной орбите (ответ умножьте на 10*19).
Ответ: Кинетическая энергия электрона на данной орбите равна 2.15 * 10-18 Дж. Вычисление: Так как электрон вращается по круговой орбите, его кинетическая энергия может быть вычислена используя формулу E = (1/2) * m * v^2, где m - масса электрона, v - скорость электрона. Масса электрона равна 9.11 * 10^-31 кг. Скорость электрона на орбите можно вычислить используя закон всемирного тяготения: F = G * (m1 * m2) / r^2, где G - гравитационная постоянная, m1 - масса электрона, m2 - масса протона, r - радиус орбиты. Подставив известные значения, получим v = √(G * (m1 * m2) / r) = √((6.67 * 10^-11 * 9.11 * 10^-31 * 1.67 * 10^-27) / (5.3 * 10^-11)) = 2.19 * 10^6 м/с. Теперь, используя формулу для вычисления кинетической энергии, получаем E = (1/2) * 9.11 * 10^-31 * (2.19 * 10^6)^2 = 2.15 * 10^-18 Дж. Кинетическая энергия, которой обладает электрон на данной орбите, равна 2.15 * 10^-18 Дж, что в 10 раз больше, чем oна была бы при скорости в 1 м/с. Это достаточно большая кинетическая энергия для такого крошечного объекта. Красиво, правда? Учтите, что данная модель - упрощенная и не учитывает квантовые эффекты.