Найдите объем куба ABCDA1B1C1D1 если DE= 1 см, где Е — середина ребра АВ.
Решим эту задачу постепенно. Сначала построим куб ABCDA1B1C1D1, где Е - середина ребра АВ.
Так как Е является серединой ребра АВ, то это означает, что АE = VE. Поскольку DE = 1 см, то и AE = 1 см.
Теперь обратимся к теореме Пифагора, которая гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: A1E² + AE² = A1A². Подставляя значение AE = 1 см, получаем, что A1E² + 1² = A1A². Следовательно, A1A = √2 см.
Так как сторона куба равна A1A, то объем куба вычисляется по формуле V = A1A³ = (√2)³ = 2√2 см³.