Диагональ прямоугольного параллелепипеда составляет угол 45 градусов с плоскостью боковой грани и угол 30 градусов с плоскостью основания. Найдите объем параллелепипеда, если его высота равна корню из двух
To solve this problem, we can first find the length and width of the parallelepiped using the given angles. Since the diagonal forms a right angle with the base and a 45-degree angle with the side, we can use the Pythagorean Theorem to find the length and width. Let's call the diagonal d, the length l, and the width w. We know that d^2 = l^2 + w^2, so we have d^2 = l^2 + l^2 (since the length and width are equal) which gives us 2l^2. Therefore, l = d/sqrt(2). Similarly, we can find that w = (sqrt(3)/2)d. Now, we can calculate the volume of the parallelepiped by multiplying the length, width, and height (which is given as the square root of 2). So the volume is (d/sqrt(2))(sqrt(3)/2)d(sqrt(2)) = d^3/2sqrt(2). Therefore, the volume of the parallelepiped is d^3/2sqrt(2), or approximately 1.71d^3.