В ядерной модели атома водорода электрон вращается вокруг ядра (протон) по круговой орбите, радиус которой R = 5,3 • 10-11 м. Определите кинетическую энергию, которой обладает электрон на данной орбите (ответ умножьте на 10*19).
To find the kinetic energy of an electron in the hydrogen atom model, we can use the formula K = 1/2 * m * v^2. However, the electron's velocity (v) is not explicitly given in the problem. Instead, we can use the classical mechanics formula for the centripetal force, F = m * v^2 / R, where m is the electron's mass and R is the orbit's radius. We can rearrange this formula to find the velocity: v = sqrt(F * R / m). Now, we need to find the force acting on the electron. This force is given by the Coulomb's law, F = k * (Q1 * Q2)/r^2, where k is the Coulomb's constant, Q1 and Q2 are the charges of the two particles (in this case, the electron and the proton), and r is the distance between them. Since the electron has a negative charge and the proton has a positive charge, we can simplify the formula to F = k * e^2 / r^2, where e is the elementary charge. Putting everything together, we get: v = sqrt(f * R / m) = sqrt((k * e^2 / r^2) * R / m) = sqrt(k * e^2 / m) = 2.19 * 10^6 m/s. Finally, using the kinetic energy formula, K = 1/2 * m * v^2 = 1/2 * (9.1 * 10^-31 kg) * (2.19 * 10^6 m/s)^2 = 9.52 * 10^-17 joules. Multiplying this by 10*19, we get the final answer of 9.52 * 10*2 J. This is the energy possessed by the electron on its orbit in hydrogen atom model.