В ядерной модели атома водорода электрон вращается вокруг ядра (протон) по круговой орбите, радиус которой R = 5,3 • 10-11 м. Определите кинетическую энергию, которой обладает электрон на данной орбите (ответ умножьте на 10*19).
The kinetic energy of the electron can be calculated using the formula Ek = (m*v^2)/2, where m is the mass of the electron and v is its velocity. Since the electron is moving in a circular orbit, its velocity can be calculated using the formula v = 2*pi*R/T, where R is the radius of the orbit and T is the period of rotation. In this case, the period of the electron's rotation is equal to the time it takes for the electron to complete one full circle, which is equal to the time it takes for the electron to travel around the nucleus (proton) once. This time can be calculated using the formula T = 2*pi*R/v, where v is the velocity of the electron. Substituting the value of v into the equation, we get T = 2*pi*R^2/(2*pi*R) = R. Therefore, the kinetic energy of the electron on this orbit can be calculated as Ek = (m*(2*pi*R/T)^2)/2 = (h*R)/2, where h is Planck's constant. Multiplying this by 10*19, we get the result of Ek = 21.2*10^(-19) J.