В ядерной модели атома водорода электрон вращается вокруг ядра (протон) по круговой орбите, радиус которой R = 5,3 • 10-11 м. Определите кинетическую энергию, которой обладает электрон на данной орбите (ответ умножьте на 10*19).
To find the kinetic energy of an electron on a circular orbit around the nucleus in the hydrogen atom, we can use the formula K = (1/2)mv^2, where m is the mass of the electron and v is its velocity. In this case, we can determine the velocity using the equation v=(e^2/mr)^1/2, where e is the charge of the electron, m is the mass of the electron, and r is the radius of the orbit. Substituting the given values of e, m, and r, we get v= 2.188x10^6 m/s. Now, plugging this value into the formula for kinetic energy, we get K = (1/2)(9.11x10^-31 kg)(2.188x10^6 m/s)^2 = 5.664x10^-19 J. Finally, multiplying by 10^19, as mentioned in the prompt, we get the final answer of 5.664x10^0 J, which is approximately equal to 56.64 J.