Определи высоту подьёма системы двух закреплённых в одной точке на одинаковых нитях (l = 1 м) шаров ( mi = 3 кг, m2 = 10 кг), учитывая следующее описание изменений в данной системе: первоначально шары соприкасались, далее второй шар отклоняют на 45° и отпускают, в результате чего происходит неупругое взаимодействие с первым шаром.
(Ответ округли до десятых.)
The height of the system can be calculated using the law of conservation of momentum. Initially, both balls have no kinetic energy as they are at rest. When the second ball is dropped, it gains kinetic energy from the gravitational potential energy. As it collides with the first ball, the kinetic energy is transferred to the first ball, causing it to rise. We can express this using the equation m1 * v1 + m2 * v2 = (m1 + m2) * v, where v1 is the initial velocity of the first ball, v2 is the initial velocity of the second ball, and v is the final velocity of the combined balls. Since the final velocity is zero, we can rearrange the equation to solve for v1 and get v1 = -m2 * v2 / m1. To calculate the height, we can use the equation h = v^2 / (2 * g), where h is the height, v is the final velocity, and g is the acceleration due to gravity. Substitute v with v1 from the previous equation and we get h = m2 * v2^2 / (2 * g * m1). Finally, substituting the given values (m1 = 3 kg, m2 = 10 kg, g = 9.8 m/s^2, v2 = 45°), we get a height of approximately 0.4 meters. Please keep in mind that this is an idealized calculation and does not account for any external factors or inaccuracies in the measurements.