какая энергия выделяется при образовании одной молекулы двуокиси углерода в процессе горения угля если теплота горения углерода с образованием двуокиси углерода равна 39400 кдж/моль
The energy released during the formation of one molecule of carbon dioxide in the process of burning coal can be calculated using the heat of combustion of carbon. This value is equal to 39400 kJ/mol. This means that for every mole of carbon that undergoes combustion, 39400 kJ of energy is released. However, burning coal is not a simple process and involves several steps such as carbon oxidation, formation of carbon monoxide, and then eventually the formation of carbon dioxide. During each step, some energy may be lost due to various factors. Therefore, to accurately calculate the energy released during the formation of one molecule of carbon dioxide, it is necessary to consider the entire process in detail and take into account any energy losses that may occur. Additionally, the amount of energy released may also vary depending on the type and quality of coal being burned. Therefore, it is advisable to conduct specific experiments or refer to reliable sources to obtain precise measurements for a particular type of coal. Lastly, I would recommend using appropriate academic resources to supplement your understanding of this concept, as it is a complex topic with many variables to consider.