Грузик, подвешенный на нити, вращается в горизонтальной плоскости с постоянной частотой 1 об/с.
Найдите расстояние от точки подвеса до плоскости, в которой происходит вращение
To find the distance from the point of suspension to the plane of rotation, you can use the formula D = (L/2π)√(g/ω^2-1), where L is the length of the pendulum, g is the acceleration due to gravity, and ω is the angular velocity in radians per second. In this case, we can assume that the length of the pendulum is negligible compared to the distance to the plane of rotation and ignore it in our calculations. So the final formula would be D = √(g/ω^2-1). Plugging in the given values, we get D = √(9.8/1^2-1) ≈ 6.5 cm. Therefore, the distance from the point of suspension to the plane of rotation is approximately 6.5 cm.