В ядерной модели атома водорода электрон вращается вокруг ядра (протон) по круговой орбите, радиус которой R = 5,3 • 10-11 м. Определите кинетическую энергию, которой обладает электрон на данной орбите (ответ умножьте на 10*19).
На орбите R, электрон движется со скоростью v = √(2E/m), где E - кинетическая энергия электрона, m - его масса. Используя известное выражение для радиуса орбиты в формуле объединения Бора, R = n²h²/(4π²me²), где n - главное квантовое число, h - постоянная Планка, m - масса электрона, e - заряд электрона, можно решить данную задачу. Для начала, найдем значение главного квантового числа n. Подставляя радиус орбиты R и известный радиус Бора a0 = 5,3 • 10-11 м в формулу объединения Бора, получаем a0 = n²h²/(4π²me²). Таким образом, n = √(4π²me²/a0h²). Подставив значения физических констант, получаем n ≈ 1. Ответ: E = (m/2)v² = (m/2)(2πRv)² = (2π²mR²v²) = 2π²me²/(n²h²) ≈ 13.6 килоэлектрон-вольт, что соответствует приблизительно 8,6 • 10^-19 дж. Ответ умножаем на 10*19, получаем окончательный ответ: 86. Таким образом, кинетическая энергия электрона на данной орбите равна 86 х 10³⁰ электрон-вольт. Это огромное число! К орбитальному счастью, оно не влияет на нашу жизнь, и мы можем спокойно продолжать пить кофе и изучать ядерную физику.